Multivariate Distributions

Multivariate Distributions#

Given a random vector \(X = \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}\), the expected value is

\[\begin{split} EX = \begin{pmatrix} EX_1 \\ \vdots \\ EX_k \end{pmatrix} \end{split}\]

The covariance of a multivariate distribution is given as the following matrix:

\[\begin{split} \begin{align*} Cov(X) &= E[(X - EX)(X - EX)^T] \\ &= \begin{bmatrix} Cov(X_1, X_1) & Cov(X_2, X_1) & \dots & Cov(X_k, X_1) \\ Cov(X_1, X_2) & Cov(X_2, X_2) & \dots & Cov(X_k, X_2) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(X_1, X_k) & Cov(X_2, X_k) & \dots & Cov(X_k, X_k) \end{bmatrix} \end{align*} \end{split}\]

Note that \(Cov(X_1, X_1) = Var(X_1)\) and \(Cov(X,Y) = E(X-EX)(Y-EY) = E(XY) - E(X)E(Y)\).

Note that if \(D\) is a matrix of constants and \(\underset{l \times 1}{Y} = \underset{l \times k}{D} * \underset{k \times 1}{X}\), then

\[ EY = D * EX \]
\[\begin{split} \begin{align*} Cov(Y) &= E\left((Y-EY)(Y-EY)^T\right) \\ &= E\left(D(X-EX)(X-EX)^T D^T\right) \\ &= D * E\left((X-EX)(X-EX)^T\right) * D^T \\ &= D * Cov(X) * D^T \\ \end{align*} \end{split}\]

The moment generating function of a \(k \times 1\) random vector \(X\) is a function of \(k\) real variables \(t_1, \dots, t_k\):

\[ M_X(t) = Ee^{tX}, \]

where \(t^T = (t_1, \dots, t_k)\). Note that \(Ee^{t^TX} = Ee^{\sum^k_{i=1} t_iX_i}\).