Homework 1#

Section 3.5 (14-17, 22)#

Problem 14#

\[ P(X_1 > X_2 + X_3 + 2) = P(X_1 - X_2 - X_3) \]
\[ Y = X_1 - X_2 - X_3 \]
\[\begin{split} Y = aX = \begin{bmatrix} 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \end{split}\]

Therefore, we see that \(Y \sim \text{Normal}(a \mu, a \Sigma a^T)\).

\[\begin{split} a \mu = \begin{bmatrix} 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0 \end{split}\]
\[ \begin{align}\begin{aligned}\begin{split} \begin{align*} a \Sigma a^T &= \begin{bmatrix} 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \\\end{split}\\\begin{split} &= \begin{bmatrix} 1 & -3 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \\\end{split}\\\begin{split} &= 1 + 3 + 3 \\ &= 7 \end{align*} \end{split}\end{aligned}\end{align} \]

Therefore, \(Y \sim \text{Normal}(0, 7)\), and so

\[\begin{split} \begin{align*} P(Y > 2) &= 1 - P(Y \leq 2) \\ &= 1 - P(Z \leq \frac{2-0}{\sqrt{7}}), & Z \sim \text{Normal}(0,1) \\ &\approx 1 - 0.775 \\ &\approx 0.225 \end{align*} \end{split}\]

Problem 16#

\[\begin{split} Y = aX = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X_1 + X_2 \\ X_1 - X_2 \end{bmatrix} \end{split}\]

Therefore, \(Y \sim \text{Normal}(a\mu, a\Sigma a^T)\).

To show that \(X_1 + X_2\) and \(X_1 - X_2\) are independent when \(Var(X_1) = Var(X_2)\), we will show that their covariance is \(0\).

\[\begin{split} \begin{align*} Var(Y) = a \Sigma a^T &= \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \sigma_1^2 & \sigma_{1,2} \\ \sigma_{1,2} & \sigma_2^2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \\ &= \begin{bmatrix} \sigma_1^2 + \sigma_{1,2} & \sigma_{1,2} + \sigma_2^2 \\ \sigma_1^2 - \sigma_{1,2} & \sigma_{1,2} - \sigma_2^2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \\ &= \begin{bmatrix} \sigma_1^2 + 2\sigma_{1,2} + \sigma_2^2 & \sigma_1^2 - \sigma_2^2 \\ \sigma_1^2 - \sigma_2^2 & \sigma_1^2 - 2\sigma_{1,2} + \sigma_2^2 \end{bmatrix} \end{align*} \end{split}\]

It follows from here that if \(Var(X_1) = Var(X_2)\), then \(Cov(X_1 + X_2, X_1 - X_2) = 0\) and, therefore, \(X_1 + X_2\) and \(X_1 - X_2\) are independent.