Poisson Distribution

Poisson Distribution#

A Poisson distribution is a discrete probability distribution that describes the number of events that occur within a fixed interval of time or space, with the events being rare and independent, and it is characterized by a single parameter, the average rate of occurrence.

A Poisson random variable is denoted as follows:

\[ X \sim \text{Poisson}(\lambda) \]

where \(\lambda\) is the average rate of occurrence.

Probability Mass Function (PMF)#

The pmf of the poisson distribtuion is as follows:

\[\begin{split} p_X(x) = \begin{cases} \frac{e^{-\lambda} \lambda^x}{x!}, & \text{if } x = 0, 1, 2, \dots \\ 0, & \text{otherwise} \end{cases} \end{split}\]

Expectation#

To derive the expected value, the following will come in handy:

\[\begin{split} \begin{align} \sum_{x=0}^\infty p_X(x) = 1 \\ \sum_{x=0}^\infty \frac{e^{-\lambda} \lambda^x}{x!} = 1 \\ \sum_{x=0}^\infty \frac{\lambda^x}{x!} = e^{\lambda} \\ \end{align} \end{split}\]

The expected value of the Poisson distribution can be derived as follows:

\[\begin{split} \begin{align} EX &= \sum_{x=0}^\infty x p_X(x) \\ &= \sum_{x=0}^\infty x \frac{e^{-\lambda} \lambda^x}{x!} \\ &= \sum_{x=1}^\infty \frac{e^{-\lambda} \lambda^x}{(x-1)!} \\ &= e^{-\lambda} \sum_{x=1}^\infty \frac{\lambda^x}{(x-1)!} \\ &= e^{-\lambda} \sum_{y=0}^\infty \frac{\lambda^{y+1}}{y!} \\ &= \lambda e^{-\lambda} \sum_{y=0}^\infty \frac{\lambda^y}{y!} \\ &= \lambda e^{-\lambda} e^{\lambda} \\ &= \lambda \end{align} \end{split}\]

Note:

  • In line (5), we substitute in \(y=x-1\)

Variance#

To derive the variance of the Poisson distribution, we perform a similar method to that of the expected value. We will consider the following:

\[ Var(X) = EX^2 - (EX)^2 = EX(X-1) + EX - (EX)^2 \]

Since we already calculated \(EX\), we only need to find \(EX(X-1)\):

\[\begin{split} \begin{align} EX(X-1) &= \sum_{x=0}^\infty x(x-1) \frac{e^{-\lambda} \lambda^x}{x!} \\ &= e^{-\lambda} \sum_{x=2}^\infty \frac{\lambda^2}{(x-2)!} \\ &= e^{-\lambda} \lambda^2 \sum_{x=2}^\infty \frac{\lambda^{x-2}}{(x-2)!} \\ &= e^{-\lambda} \lambda^2 \sum_{y=0}^\infty \frac{\lambda^y}{y!} \\ &= e^{-\lambda} \lambda^2 e^\lambda \\ &= \lambda^2 \\ \end{align} \end{split}\]

Note:

  • In line (4), we substitute in \(y=x-2\)

  • In line (5), we recognize apply the equation derived in the Expectation section

Now, we can use this to solve for the variance:

\[ Var(X) = EX(X-1) + EX - (EX)^2 = \lambda^2 + \lambda - \lambda^2 = \lambda \]